Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Signs of predictive coding in dynamic facial expression processing

MPG-Autoren
/persons/resource/persons83839

Bülthoff,  HH
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84005

Kaulard,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schultz, J., Bülthoff, H., & Kaulard, K. (2013). Signs of predictive coding in dynamic facial expression processing. Poster presented at 36th European Conference on Visual Perception (ECVP 2013), Bremen, Germany.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-4E6D-F
Zusammenfassung
Processing social information contained in facial motion is likely to involve neural mechanisms in hierarchically organized brain regions. To investigate processing of facial expressions, we acquired functional magnetic imaging data from 11 participants observing videos of 12 facial expressions. Stimuli were presented upright (clearly perceivable social information) and upside-down (disrupted social information). We assessed the amount of information contained in the brain activation patterns evoked by these expressions with multivariate searchlight analyses. We found reliable above-chance decoding performance for upright stimuli only in the left superior temporal sulcus region (STS) and for inverted stimuli only in the early visual cortex (group effects, corrected for family-wise errors resulting from multiple comparisons across gray matter voxels). Predictive coding proposes that inferences from high-level areas are subtracted from incoming sensory information in lower-level areas through feedback. Accordingly, we propose that upright stimuli activate representations of facial expressions in STS, which induces feedback to early visual areas and reduced processing in those regions. In contrast, we propose that upside-down stimuli fail to activate representations in STS and thus are processed longer in early visual cortex. Predictive coding might prove a useful framework for studying the network of brain regions processing social information.