Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

Development and use of tube tetrodes for electrophysiological investigation of deep lying brain structures of the macaque

MPG-Autoren
/persons/resource/persons84003

Kapoor,  V
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kapoor, V. (2013). Development and use of tube tetrodes for electrophysiological investigation of deep lying brain structures of the macaque. In Donders Discussions 2013 (pp. 20).


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-4EB5-C
Zusammenfassung
A major approach of investigation in systems neuroscience has been to study the activity of single neurons (units) in relation to a sensory input or a behavioral act. One tool, which has been consistently employed for this purpose is the microelectrode. Recent advances in microelectrode technology have permitted recording the activity of several neurons simultaneously, therefore allowing the study of information processing at the level of neuronal populations. Twisted wire tetrodes (TWTs), have played an instrumental role in this advance because of their ability to record multiple single units and the isolation quality of the recorded single units. However, their limited tensile strength has hindered their use for electrophysiological recordings in deep lying structures of the macaque brain. We therefore developed a simple method for conferring strength to conventional TWTs, and call them Tube Tetrodes (TuTes). TuTes can be built using standard laboratory equipment and are very cost efficient. Further, their ultrathin diameter minimizes the tissue damage along their path. We also developed a multi-tetrode drive to independently control and advance up to 5 TuTes to the inferotemporal cortex of a rhesus macaque. Electrophysiological activity recorded with these TuTes from a macaque engaged in a simple behavioral task demonstrates that the signal quality recorded from them is comparable to conventional TWTs. Finally, these TuTes could be easily adapted to work with other microdrives commonly used for electrophysiology.