English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Studying Large-Scale Brain Networks: Electrical Stimulation Neural-Event-Triggered fMRI

MPS-Authors
/persons/resource/persons84063

Logothetis,  NK
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Logothetis, N. (2013). Studying Large-Scale Brain Networks: Electrical Stimulation Neural-Event-Triggered fMRI. Talk presented at INC Seminar: Laboratoire Psychologie de la Perception. Paris, France.


Cite as: https://hdl.handle.net/21.11116/0000-0001-4EDB-2
Abstract
The brain is "the" example of an adaptive, complex system. It is characterized by ultra-high structural complexity and massive connectivity, both of which change and evolve in response to experience. Information related to sensors and effectors is processed in both a parallel and a hierarchical fashion. The connectivity between different hierarchical levels is bidirectional, and its effectiveness is continuously controlled by specific associational and neuromodulatory centers. In the study of such systems one major problem is the adequate definition for an elementary operational unit (often called an "agent"), because any such module can be a complex system in its own right and may be recursively decomposed into other sets of units. A second difficulty arises from the synergistic organization of complex systems and of the brain in particular. Synergy here refers to the fact that the behavior of an integral, aggregate, whole system cannot be trivially reduced to, or predicted from, the components themselves. Localizing and comprehending the neural mechanisms underlying our cognitive capacities demands the combination of multimodal methodologies, i.e. it demands concurrent study of components and networks; one way of doing this, is to combine invasive methods which afford direct access to the brain's electrical activity at the microcircuit level with global imaging technologies such as magnetic resonance imaging (MRI). In my talk, I'll discuss two such methodologies: Direct Electrical Stimulation and fMRI (DES-fMRI) and Neural-Event-Triggered fMRI (NET-fMRI).