English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quantum dynamics in transverse-field Ising models from classical networks

MPS-Authors
/persons/resource/persons205260

Heyl,  Markus
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schmitt, M., & Heyl, M. (2018). Quantum dynamics in transverse-field Ising models from classical networks. SciPost Physics, 4(2): 013. doi:10.21468/SciPostPhys.4.2.013.


Cite as: https://hdl.handle.net/21.11116/0000-0001-50FD-8
Abstract
The efficient representation of quantum many-body states with classical resources is a key challenge in quantum many-body theory. In this work we analytically construct classical networks for the description of the quantum dynamics in transverse-field Ising models that can be solved efficiently using Monte Carlo techniques. Our perturbative construction encodes time-evolved quantum states of spin-1/2 systems in a network of classical spins with local couplings and can be directly generalized to other spin systems and higher spins. Using this construction we compute the transient dynamics in one, two, and three dimensions including local observables, entanglement production, and Loschmidt amplitudes using Monte Carlo algorithms and demonstrate the accuracy of this approach by comparisons to exact results. We include a mapping to equivalent artificial neural networks, which were recently introduced to provide a universal structure for classical network wave functions.