English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Reverse-engineering sensory-evoked signal flow in rat barrel cortex

MPS-Authors
/persons/resource/persons84931

Egger,  R
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192641

Schmitt,  AC
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Research Group Network Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84944

Narayanan,  RT
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84010

Kerr,  JN
Former Research Group Network Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84910

Oberlaender,  M
Former Research Group Computational Neuroanatomy, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Egger, R., Schmitt, A., Dercksen, V., Narayanan, R., De Kock, C., Kerr, J., et al. (2013). Reverse-engineering sensory-evoked signal flow in rat barrel cortex. Poster presented at 26th Annual Barrels Meeting (Barrels XXVI), San Diego, CA, USA.


Cite as: https://hdl.handle.net/21.11116/0000-0001-5161-6
Abstract
There is no abstract available