Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Hydrodynamic suppression of phase separation in active suspensions


Golestanian,  Ramin       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Matas-Navarro, R., Golestanian, R., Liverpool, T. B., & Fielding, S. M. (2014). Hydrodynamic suppression of phase separation in active suspensions. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 90(3): 032304. doi:10.1103/PhysRevE.90.032304.

Cite as: https://hdl.handle.net/21.11116/0000-0001-76E6-7
We simulate with hydrodynamics a suspension of active disks squirming through a Newtonian fluid. We explore numerically the full range of squirmer area fractions from dilute to close packed and show that "motility induced phase separation," which was recently proposed to arise generically in active matter, and which has been seen in simulations of active Brownian disks, is strongly suppressed by hydrodynamic interactions. We give an argument for why this should be the case and support it with counterpart simulations of active Brownian disks in a parameter regime that provides a closer counterpart to hydrodynamic suspensions than in previous studies. © 2014 American Physical Society.