User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Peptidoglycan architecture can specify division planes in Staphylococcus aureus


Golestanian,  Ramin
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Turner, R. D., Ratcliffe, E. C., Wheeler, R., Golestanian, R., Hobbs, J. K., & Foster, S. J. (2010). Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nature Communications, 1(3): 26. doi:10.1038/ncomms1025.

Cite as: http://hdl.handle.net/21.11116/0000-0001-788A-D
Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations. © 2010 Macmillan Publishers Limited. All rights reserved.