Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Synthetic mechanochemical molecular swimmer


Golestanian,  Ramin       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Golestanian, R. (2010). Synthetic mechanochemical molecular swimmer. Physical Review Letters, 105(1): 018103. doi:10.1103/PhysRevLett.105.018103.

Cite as: https://hdl.handle.net/21.11116/0000-0001-78C0-F
A minimal design for a molecular swimmer is proposed that is based on a mechanochemical propulsion mechanism. Conformational changes are induced by electrostatic actuation when specific parts of the molecule temporarily acquire net charges through catalyzed chemical reactions involving ionic components. The mechanochemical cycle is designed such that the resulting conformational changes would be sufficient for achieving low Reynolds number propulsion. The system is analyzed within the recently developed framework of stochastic swimmers to take account of the noisy environment at the molecular scale. The swimming velocity of the device is found to depend on the concentration of the fuel molecule according to the Michaelis-Menten rule in enzymatic reactions. © 2010 The American Physical Society.