English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods

MPS-Authors
/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125350

Roters,  Franz
Theory and Simulation, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jafari, M., Jamshidian, M., Ziaei-Rad, S., Raabe, D., & Roters, F. (2017). Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods. International Journal of Plasticity, 99, 19-42. doi:10.1016/j.ijplas.2017.08.004.


Cite as: http://hdl.handle.net/21.11116/0000-0001-637B-6
Abstract
We have developed a thermodynamically-consistent finite-deformation-based constitutive theory to describe strain induced grain boundary migration due to the heterogeneity of stored deformation energy in a plastically deformed polycrystalline cubic metal. Considering a representative volume element, a mesoscale continuum theory is developed based on the coupling between dislocation density-based crystal plasticity and phase field methods. Using the Taylor model-based homogenization method, a multiscale coupled finite-element and phase-field staggered time integration procedure is developed and implemented into the Abaqus/Standard finite element package via a user-defined material subroutine. The developed constitutive model is then used to perform numerical simulations of strain induced grain boundary migration in polycrystalline tantalum. The simulation results are shown to qualitatively and quantitatively agree with experimental results. (C) 2017 Elsevier Ltd. All rights reserved.