English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study

MPS-Authors
/persons/resource/persons127379

Pradeep,  Konda Gokuldoss
Materials Chemistry, RWTH Aachen University, Kopernikusstr.10, 52074 Aachen, Germany;
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125088

Choi,  Pyuck-Pa
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zilnyk, K. D., Pradeep, K. G., Choi, P.-P., Sandim, H. R. Z., & Raabe, D. (2017). Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study. Journal of Nuclear Materials, 492, 142-147. doi:10.1016/j.jnucmat.2017.05.027.


Cite as: https://hdl.handle.net/21.11116/0000-0001-64B8-F
Abstract
Oxide-dispersion strengthened materials are important candidates for several high-temperature structural applications in advanced nuclear power plants. Most of the desirable mechanical properties presented by these materials are due to the dispersion of stable nanoparticles in the matrix. Samples of ODS-Eurofer steel were annealed for 4320 h (6 months) at 800 degrees C. The material was characterized using atom probe tomography in both conditions (prior and after heat treatment). The particles number density, size distribution, and chemical compositions were determined. No significant changes were observed between the two conditions indicating a high thermal stability of the Y-rich nanoparticles at 800 degrees C. (C) 2017 Elsevier B.V. All rights reserved.