English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Fibronectin-bound α5β1 integrins sense load and signal to reinforce adhesion in less than a second

MPS-Authors
/persons/resource/persons77945

Fässler,  Reinhard
Fässler, Reinhard / Molecular Medicine, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Strohmeyer, N., Bharadwaj, M., Costell, M., Fässler, R., & Müller, D. J. (2017). Fibronectin-bound α5β1 integrins sense load and signal to reinforce adhesion in less than a second. Nature Materials, 16, 1262-1270. doi:10.1038/nmat5023.


Cite as: https://hdl.handle.net/21.11116/0000-0001-6E0C-8
Abstract
Integrin-mediated mechanosensing of the extracellular environment allows cells to control adhesion and signalling. Whether cells sense and respond to force immediately upon ligand-binding is unknown. Here, we report that during adhesion initiation, fibroblasts respond to mechanical load by strengthening integrin-mediated adhesion to fibronectin (FN) in a biphasic manner. In the first phase, which depends on talin and kindlin as well as on the actin nucleators Arp2/3 and mDia, FN-engaged α5β1 integrins activate focal adhesion kinase (FAK) and c-Src in less than 0.5 s to steeply strengthen α5β1- and αV-class integrin-mediated adhesion. When the mechanical load exceeds a certain threshold, fibroblasts decrease adhesion and initiate the second phase, which is characterized by less steep adhesion strengthening. This unique, biphasic cellular adhesion response is mediated by α5β1 integrins, which form catch bonds with FN and signal to FN-binding integrins to reinforce cell adhesion much before visible adhesion clusters are formed.