English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Variational multiscale nonparametric regression: Smooth functions.

MPS-Authors
/persons/resource/persons206972

Li,  H.
Research Group of Statistical Inverse-Problems in Biophysics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons32719

Munk,  A.
Research Group of Statistical Inverse-Problems in Biophysics, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2597697.pdf
(Preprint), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Grasmair, M., Li, H., & Munk, A. (2018). Variational multiscale nonparametric regression: Smooth functions. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 54(2), 1058-1097. doi: 10.1214/17-AIHP832.


Cite as: https://hdl.handle.net/21.11116/0000-0001-6E8D-6
Abstract
For the problem of nonparametric regression of smooth functions, we reconsider and analyze a constrained variational approach, which we call the MultIscale Nemirovski-Dantzig (MIND) estimator. This can be viewed as a multiscale extension of the Dantzig selector (Ann. Statist. 35 (2009) 2313-2351) based on early ideas of Nemirovski (J. Comput. System Sci. 23 (1986) 111). MIND minimizes a homogeneous Sobolev norm under the constraint that the multiresolution norm of the residual is bounded by a universal threshold. The main contribution of this paper is the derivation of convergence rates of MIND with respect to L-q-loss, 1 <= q <= infinity, both almost surely and in expectation. To this end, we introduce the method of approximate source conditions. For a one-dimensional signal, these can be translated into approximation properties of B-splines. A remarkable consequence is that MIND attains almost minimax optimal rates simultaneously for a large range of Sobolev and Besov classes, which provides certain adaptation. Complimentary to the asymptotic analysis, we examine the finite sample performance of MIND by numerical simulations. A MATLAB package is available online.