English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Human aging alters the neural computation and representation of space

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schuck, N. W., Doeller, C. F., Polk, T. A., Lindenberger, U., & Li, S.-C. (2015). Human aging alters the neural computation and representation of space. NeuroImage, 117, 141-150. doi:10.1016/j.neuroimage.2015.05.031.


Cite as: https://hdl.handle.net/21.11116/0000-0001-715F-6
Abstract
The hippocampus and striatum are core neural circuits involved in spatial learning and memory. Although both neural systems support spatial navigation, experimental and theoretical evidence indicate that they play different roles. In particular, whereas hippocampal place cells generate allocentric neural representations of space that are sensitive to geometric information, striatum-dependent learning is influenced by local landmarks. How human aging affects these different neural representations, however, is still not well understood. In this paper, we combined virtual reality, computational modeling, and neuroimaging to investigate the effects of age upon the neural computation and representation of space in humans. We manipulated the geometry and local landmarks of a virtual environment and examined the effects on memory performance and brain activity during spatial learning. In younger adults, both behavior and brain activity in the medial-temporal lobe were consistent with predictions of a computational model of hippocampus-dependent boundary processing. In contrast, older adults' behavior and medial-temporal lobe activity were primarily influenced by local cue information, and spatial learning was more associated with activity in the caudate nucleus rather than the hippocampus. Together these results point to altered spatial representations and information processing in the hippocampal–striatal circuitry with advancing adult age, which may contribute to spatial learning and memory deficits associated with normal and pathological aging.