Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quantitative Assessment of Digital Image Correlation Methods to Detect and Monitor Surface Displacements of Large Slope Instabilities

MPG-Autoren
/persons/resource/persons221946

Bickel,  Valentin Tertius
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;
International Max Planck Research School for Solar System Science at the University of Göttingen, Max Planck Institute for Solar System Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bickel, V. T., Manconi, A., & Amann, F. (2018). Quantitative Assessment of Digital Image Correlation Methods to Detect and Monitor Surface Displacements of Large Slope Instabilities. Remote Sensing, 10(6): 865. doi:10.3390/rs10060865.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-7519-0
Zusammenfassung
We evaluate the capability of three different digital image correlation (DIC) algorithms to measure long-term surface displacement caused by a large slope instability in the Swiss Alps. DIC was applied to high-resolution optical imagery taken by airborne sensors, and the accuracy of the displacements assessed against global navigation satellite system measurements. A dynamic radiometric correction of the input images prior to DIC application was shown to enhance both the correlation success and accuracy. Moreover, a newly developed spatial filter considering the displacement direction and magnitude proved to be an effective tool to enhance DIC performance and accuracy. Our results show that all algorithms are capable of quantifying slope instability displacements, with average errors ranging from 8 to 12% of the observed maximum displacement, depending on the DIC processing parameters, and the pre- and postprocessing of the in- and output. Among the tested approaches, the results based on a fast Fourier transform correlation approach provide a considerably better spatial coverage of the displacement field of the slope instability. The findings of this study are relevant for slope instability detection and monitoring via DIC, especially in the context of an ever-increasing availability of high-resolution air- and spaceborne imagery.