English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dynamical properties and acceleration of hierarchical dust in the vicinity of comet 67P/Churyumov–Gerasimenko

MPS-Authors
/persons/resource/persons104214

Skorov,  Yuri V.
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104151

Rezac,  Ladislav
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103953

Hartogh,  Paul
Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Skorov, Y. V., Reshetnyk, V., Rezac, L., Zhao, Y., Marschall, R., Blum, J., et al. (2018). Dynamical properties and acceleration of hierarchical dust in the vicinity of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 477(4), 4896-4907. doi:10.1093/mnras/sty1014.


Cite as: https://hdl.handle.net/21.11116/0000-0001-75AD-9
Abstract
A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as revealed by recent observation from the Rosetta mission. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Secondly, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.