Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Strongly bound excitons in anatase TiO2 single crystals and nanoparticles

MPG-Autoren
/persons/resource/persons221958

Dominguez,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Departamento Fisica de Materiales, Universidad del País Vasco;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s41467-017-00016-6.pdf
(Verlagsversion), 2MB

1601.01244.pdf
(Preprint), 7MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Baldini, E., Chiodo, L., Dominguez, A., Palummo, M., Moser, S., Yazdi-Rizi, M., et al. (2017). Strongly bound excitons in anatase TiO2 single crystals and nanoparticles. Nature Communications, 8: 13. doi:10.1038/s41467-017-00016-6.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-7B1A-9
Zusammenfassung
Anatase TiO2 is among the most studied materials for light-energy conversion applications, but the nature of its fundamental charge excitations is still unknown. Yet it is crucial to establish whether light absorption creates uncorrelated electron-hole pairs or bound excitons and, in the latter case, to determine their character. Here, by combining steady-state angle-resolved photoemission spectroscopy and spectroscopic ellipsometry with state-of-the-art ab initio calculations, we demonstrate that the direct optical gap of single crystals is dominated by a strongly bound exciton rising over the continuum of indirect interband transitions. This exciton possesses an intermediate character between the Wannier-Mott and Frenkel regimes and displays a peculiar two-dimensional wavefunction in the three-dimensional lattice. The nature of the higher-energy excitations is also identified. The universal validity of our results is confirmed up to room temperature by observing the same elementary excitations in defect-rich samples (doped single crystals and nanoparticles) via ultrafast two-dimensional deep-ultraviolet spectroscopy.