English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The timing of hemodynamic changes reliably reflects spiking activity

MPS-Authors
/persons/resource/persons192689

Zaidi,  AD
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192934

Sitaram,  R
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zaidi, A., Birbaumer, N., Fetz, E., Logothetis, N., & Sitaram, R. (submitted). The timing of hemodynamic changes reliably reflects spiking activity.


Cite as: https://hdl.handle.net/21.11116/0000-0001-7D20-F
Abstract
Functional neuroimaging is a powerful non-invasive tool for studying brain function, using changes in blood oxygenation as a proxy for underlying neuronal activity. The neuroimaging signal correlates with both spiking, and various bands of the local field potential (LFP), making the inability to discriminate between them a serious limitation for interpreting hemodynamic changes. Here, we record activity from the striate cortex in two anesthetized monkeys (Macaca mulatta), using simultaneous functional near-infrared spectroscopy (fNIRS) and intra-cortical electrophysiology. We find that low-frequency LFPs correlate with hemodynamic signal's peak amplitude, whereas spiking correlates with its peak-time and initial-dip. We also find spiking to be more spatially localized than low-frequency LFPs. Our results suggest that differences in spread of spiking and low-frequency LFPs across cortical surface influence different parameters of the hemodynamic response. Together, these results demonstrate that the hemodynamic response-amplitude is a poor correlate of spiking activity. Instead, we demonstrate that the timing of the initial-dip and the hemodynamic response are much more reliable correlates of spiking, reflecting bursts in spike-rate and total spike-counts respectively.