English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Modeling real shim fields for very high degree (and order) B0 shimming of the human brain at 9.4 T

MPS-Authors
/persons/resource/persons192839

Chang,  P
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192740

Nassirpour,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84402

Henning,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Chang, P., Nassirpour, S., & Henning, A. (2018). Modeling real shim fields for very high degree (and order) B0 shimming of the human brain at 9.4 T. Magnetic Resonance in Medicine, 79(1), 529-540. doi:10.1002/mrm.26658.


Cite as: https://hdl.handle.net/21.11116/0000-0001-7D37-6
Abstract
Purpose To describe the process of calibrating a B0 shim system using high-degree (or high order) spherical harmonic models of the measured shim fields, to provide a method that considers amplitude dependency of these models, and to show the advantage of very high-degree B0 shimming for whole-brain and single-slice applications at 9.4 Tesla (T). Methods An insert shim with up to fourth and partial fifth/sixth degree (order) spherical harmonics was used with a Siemens 9.4T scanner. Each shim field was measured and modeled as input for the shimming algorithm. Optimal shim currents can therefore be calculated in a single iteration. A range of shim currents was used in the modeling to account for possible amplitude nonlinearities. The modeled shim fields were used to compare different degrees of whole-brain B0 shimming on healthy subjects. Results The ideal shim fields did not correctly shim the subject brains. However, using the modeled shim fields improved the B0 homogeneity from 55.1 (second degree) to 44.68 Hz (partial fifth/sixth degree) on the whole brains of 9 healthy volunteers, with a total applied current of 0.77 and 6.8 A, respectively. Conclusions The necessity of calibrating the shim system was shown. Better B0 homogeneity drastically reduces signal dropout and distortions for echo-planar imaging, and significantly improves the linewidths of MR spectroscopy imaging.