English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Real-Time Nonlinear Model Predictive Control of a Motion Simulator Based on a 8-DOF Serial Robot

MPS-Authors
/persons/resource/persons192766

Katliar,  M
Project group: Motion Perception & Simulation, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84423

Drop,  F
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Motion Perception & Simulation, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84255

Teufel,  H
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Motion Perception & Simulation, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Katliar, M., Drop, F., Teufel, H., Diehl, M., & Bülthoff, H. (2018). Real-Time Nonlinear Model Predictive Control of a Motion Simulator Based on a 8-DOF Serial Robot. In 2018 European Control Conference (ECC) (pp. 1529-1535). Piscataway, NJ, USA: IEEE. doi:10.23919/ECC.2018.8550041.


Cite as: http://hdl.handle.net/21.11116/0000-0001-7D4A-1
Abstract
In this paper we present the implementation of a model predictive controller (MPC) for real-time control of a motion simulator based on a serial robot with 8 degrees of freedom. The goal of the controller is to accurately reproduce six reference signals simultaneously (the accelerations and angular velocities in the body frame of reference) taken from a simulated or real vehicle, by moving the human participant sitting inside the cabin located at the end effector. The controller computes the optimal combined motion of all axes while keeping the axis positions, velocities and accelerations within their limits. The motion of the axes is computed every 12ms based on a prediction horizon consisting of 60 steps, spaced 48ms apart, thus looking ahead 2.88s. To evaluate tracking performance, we measured the acceleration and angular velocity in the cabin using an Inertial Measurement Unit (IMU) for synthetic (doublets and triangle-doublets) and realistic (recorded car and helicopter maneuvers) reference signals. We found that fast-changing acceleration inputs excite the natural frequencies of the system, leading to severe mechanical oscillations. These oscillations can be modelled by a second-order LTI system and mitigated by including this model in the controller. The use of proper algorithms and software allows the computations to be done in real-time.