English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Functional phosphorus spectroscopy of the human visual cortex at 9.4 T

MPS-Authors
/persons/resource/persons84145

Pohmann,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216070

Raju,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pohmann, R., Raju, S., & Scheffler, K. (2018). Functional phosphorus spectroscopy of the human visual cortex at 9.4 T. Poster presented at Joint Annual Meeting ISMRM-ESMRMB 2018, Paris, France.


Cite as: https://hdl.handle.net/21.11116/0000-0001-7D9C-4
Abstract
Functional 31P spectroscopy has been investigated in several studies with greatly varying results, which may be due to the low sensitivity of the 31P nucleus. We have taken advantage of the high SNR at 9.4 T to acquire spectra from the human visual cortex under stimulation. Experiments were performed with different localization volumes, defined by saturation pulses. In spite of the excellent quality of the obtained data, no stimulation-related changes in metabolite concentrations or resonance frequencies could be detected.