English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Novel contrasts at +2.7 ppm, +1.2 ppm, and -1.7 ppm investigated in vivo with high spectral resolution CEST MRI in the human brain at 9.4T

MPS-Authors
/persons/resource/persons216082

Schuppert,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216025

Herz,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons215996

Deshmane,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214560

Zaiss,  M
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Ressource

Link
(Abstract)

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schuppert, M., Herz, K., Deshmane, A., & Zaiss, M. (2018). Novel contrasts at +2.7 ppm, +1.2 ppm, and -1.7 ppm investigated in vivo with high spectral resolution CEST MRI in the human brain at 9.4T. Poster presented at Joint Annual Meeting ISMRM-ESMRMB 2018, Paris, France.


Cite as: http://hdl.handle.net/21.11116/0000-0001-7DAD-1
Abstract
Using volumetric snapshot-GRE CEST MRI at 9.4T with high frequency sampling, we were able to separate novel CEST peaks at +2.7 ppm, +1.2 ppm and -1.7 ppm reliably in the CEST-spectrum and showed creation of maps of these CEST MRI contrasts in the healthy human brain to be feasible in vivo.