English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Universal Parallel Transmit Pulse Design for Local Excitation

MPS-Authors
/persons/resource/persons214895

Geldschläger,  O
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192743

Shao,  T
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84402

Henning,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Geldschläger, O., Shao, T., & Henning, A. (2018). Universal Parallel Transmit Pulse Design for Local Excitation. Poster presented at Joint Annual Meeting ISMRM-ESMRMB 2018, Paris, France.


Cite as: http://hdl.handle.net/21.11116/0000-0001-7DD2-6
Abstract
This study investigates different parallel transmission (PTx) pulse design methods to find a universal PTx-pulse that excites the same local pattern with a 90 degree flip-angle across different heads. Thus, it abandons prospective the need for time-consuming subject specific B1+mapping and PTx-pulse calculation, during the scan session. The best results were achieved by solving a minimax optimization problem were the maximum normalized root mean square error (NRMSE) over all subjects was minimized. The resulting pulse created magnetization profiles with a maximum NRMSE of around 0.049 across all volunteers.