Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

Deep CEST MRI: 9.4T spectral super-resolution from 3T CEST MRI data

MPG-Autoren
/persons/resource/persons214560

Zaiss,  M
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons215996

Deshmane,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216025

Herz,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(Zusammenfassung)

https://www.ismrm.org/18/ToC.pdf
(Zusammenfassung)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zaiss, M., Deshmane, A., Herz, K., Braun, M., Bender, B., Lindig, T., et al. (2018). Deep CEST MRI: 9.4T spectral super-resolution from 3T CEST MRI data. In Joint Annual Meeting ISMRM-ESMRMB 2018.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-7E21-D
Zusammenfassung
CEST peaks are easy to detect at ultra-high-field strengths due to high signal and spectral separation. However, spectral coalescence and line broadening makes modeling of CEST effects at clinical field strengths (<=3T) a challenge. In this proof-of-concept study of super-resolution CEST imaging, the underlying spectral features of 3T Z-spectra were predicted using a neural network trained on 9.4T data. Applying the neural network to untrained volunteer and patient data acquired at 3T resulted in the expected contrast in healthy gray and white matter and tumor tissue in Z-spectra and APT, NOE, and MT CEST maps.