Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Unravelling cerebellar pathways with high temporal precision targeting motor and extensive sensory and parietal network

MPG-Autoren
/persons/resource/persons83787

Augath,  MA
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84099

Murayama,  Y
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84733

Oeltermann,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84158

Rauch,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sultan, F., Augath, M., Hamodeh, S., Murayama, Y., Oeltermann, A., Rauch, A., et al. (2012). Unravelling cerebellar pathways with high temporal precision targeting motor and extensive sensory and parietal network. Nature Communications, 3: 924, pp. 1-10. doi:10.1038/ncomms1912.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-882D-4
Zusammenfassung
Increasing evidence has implicated the cerebellum in providing forward models of motor plants predicting the sensory consequences of actions. Assuming that cerebellar input to the cerebral cortex contributes to the cerebro-cortical processing by adding forward model signals, we would expect to find projections emphasising motor and sensory cortical areas. However, this expectation is only partially met by studies of cerebello–cerebral connections. Here we show that by electrically stimulating the cerebellar output and imaging responses with functional magnetic resonance imaging, evoked blood oxygen level-dependant activity is observed not only in the classical cerebellar projection target, the primary motor cortex, but also in a number of additional areas in insular, parietal and occipital cortex, including sensory cortical representations. Further probing of the responses reveals a projection system that has been optimized to mediate fast and temporarily precise information. In conclusion, both the topography of the stimulation effects and its emphasis on temporal precision are in full accordance with the concept of cerebellar forward model information modulating cerebro-cortical processing.