Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

In-vivo Proton Chemical Shift Imaging at 9.4 Tesla: preliminary study

MPG-Autoren
/persons/resource/persons84213

Shajan,  G
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84145

Pohmann,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chadzynski, G., Shajan, G., Kolb, R., Pohmann, R., Scheffler, K., & Klose, U. (2012). In-vivo Proton Chemical Shift Imaging at 9.4 Tesla: preliminary study. In 43. Jahrestagung der Deutschen Gesellschaft für Medizinische Physik (DGMP 2012) (pp. 60-63).


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-8B5B-D
Zusammenfassung
Main benefits for proton magnetic resonance spectroscopy (1H MRS) when moving toward ultra-high magnetic fields are increased signal-to-noise ratio (SNR) and better separation of the metabolite resonances. As shown in previous studies [1- 6] this increases the number of detectable metabolites and therefore provides better insight into brain biochemistry. Regardless of the known difficulties: longer T1 and shorter T2 relaxation times, higher RF power deposition and stronger B0 and B1 inhomogeneities; it was demonstrated that MRS may be feasible at field strengths of 7 or 9.4 T in the case of humans [4- 6] or even at strengths of 14.1 and 16.4 T in the case of rodents [2, 3]. The feasibility of in-vivo 1H spectroscopy of the human brain at the field strength of 9.4 T has been already verified by Deelchand et al. [6]. This study demonstrated that at this field strength it is possible to obtain high quality single voxel spectra and to perform absolute quantification of 15 metabolites. Since the main advantage of 1H chemical shift imaging (CSI) over single voxel spectroscopy (SVS) is providing the additional information about spatial distribution of metabolites, the motivation of this study was to examine if at this particular field strength (9.4 T) it is possible to obtain CSI spectra with acceptable SNR and spectral resolution.