English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Velocity-resolved kinetics of site-specific carbon monoxide oxidation on platinum surfaces.

MPS-Authors
/persons/resource/persons133938

Neugebohren,  J.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons222377

Borodin,  D.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons206133

Hahn,  H.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons209301

Altschäffel,  J.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15297

Kandratsenka,  A.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons41359

Auerbach,  D. J.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15808

Schwarzer,  D.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons86711

Harding,  D.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons16046

Wodtke,  A. M.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons82304

Kitsopoulos,  T. N.
Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Neugebohren, J., Borodin, D., Hahn, H., Altschäffel, J., Kandratsenka, A., Auerbach, D. J., et al. (2018). Velocity-resolved kinetics of site-specific carbon monoxide oxidation on platinum surfaces. Nature, 558(7709), 280-283. doi:10.1038/s41586-018-0188-x.


Cite as: https://hdl.handle.net/21.11116/0000-0001-9213-4
Abstract
Catalysts are widely used to increase reaction rates. They function by stabilizing the transition state of the reaction at their active site, where the atomic arrangement ensures favourable interactions 1 . However, mechanistic understanding is often limited when catalysts possess multiple active sites-such as sites associated with either the step edges or the close-packed terraces of inorganic nanoparticles2-4-with distinct activities that cannot be measured simultaneously. An example is the oxidation of carbon monoxide over platinum surfaces, one of the oldest and best studied heterogeneous reactions. In 1824, this reaction was recognized to be crucial for the function of the Davy safety lamp, and today it is used to optimize combustion, hydrogen production and fuel-cell operation5,6. The carbon dioxide products are formed in a bimodal kinetic energy distribution7-13; however, despite extensive study 5 , it remains unclear whether this reflects the involvement of more than one reaction mechanism occurring at multiple active sites12,13. Here we show that the reaction rates at different active sites can be measured simultaneously, using molecular beams to controllably introduce reactants and slice ion imaging14,15 to map the velocity vectors of the product molecules, which reflect the symmetry and the orientation of the active site 16 . We use this velocity-resolved kinetics approach to map the oxidation rates of carbon monoxide at step edges and terrace sites on platinum surfaces, and find that the reaction proceeds through two distinct channels11-13: it is dominated at low temperatures by the more active step sites, and at high temperatures by the more abundant terrace sites. We expect our approach to be applicable to a wide range of heterogeneous reactions and to provide improved mechanistic understanding of the contribution of different active sites, which should be useful in the design of improved catalysts.