English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tunable giant magnetocaloric effect with very low hysteresis in Mn3CuN1-xCx

MPS-Authors
/persons/resource/persons187905

Born,  N.-O.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons182653

Caron,  L.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Born, N.-O., Caron, L., Seeler, F., & Felser, C. (2018). Tunable giant magnetocaloric effect with very low hysteresis in Mn3CuN1-xCx. Journal of Alloys and Compounds, 749, 926-930. doi:10.1016/j.jallcom.2018.03.311.


Cite as: https://hdl.handle.net/21.11116/0000-0001-940B-C
Abstract
The structural, magnetic and magnetocaloric properties of the antiperovskite materials Mn3CuN1-xCx have been studied. Substituting N with C increases the temperature of the magnetostructural transition between a paramagnetic cubic high temperature phase and a ferrimagnetic tetragonal low temperature phase. Furthermore, the first order character of the phase transition is retained upon substitution with a hysteresis below 2 K for all compositions. The magnetostructural transition gives rise to giant magnetocaloric effects in a tunable 30 K temperature range with a maximum entropy change of 11: 8 J/Kkg at a 2 T field change, making these compounds promising for low temperature magnetic refrigeration applications. (C) 2018 Elsevier B.V. All rights reserved.