English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2

MPS-Authors
/persons/resource/persons221626

Xu,  Qiunan
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons222409

Liu,  Enke
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons198798

Shi,  Wujun
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons222411

Gayles,  Jacob
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons179670

Sun,  Yan
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Xu, Q., Liu, E., Shi, W., Muechler, L., Gayles, J., Felser, C., et al. (2018). Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2. Physical Review B, 97(23): 235416, pp. 1-8. doi:10.1103/PhysRevB.97.235416.


Cite as: http://hdl.handle.net/21.11116/0000-0001-9408-F
Abstract
Very recently, the half-metallic compound Co3Sn2S2 was proposed to be a magnetic Weyl semimetal (WSM) with Weyl points only 60 meV above the Fermi level E-F. Owing to the low charge carrier density and large Berry curvature induced, Co3Sn2S2 possesses both a large anomalous Hall conductivity and a large anomalous Hall angle, which provide strong evidence for the existence of Weyl points in Co3Sn2S2. In this work, we theoretically study the surface topological feature of Co3Sn2S2 and its counterpart Co3Sn2Se2. By cleaving the sample at the weak Sn-S/Se bonds, one can achieve two different surfaces terminated with Sn and S/Se atoms, respectively. The resulting Fermi-arc-related states can range from the energy of the Weyl points to E-F - 0.1 eV in the Sn-terminated surface. Therefore, it should be possible to observe the Fermi arcs in angle-resolved photoemission spectroscopy (ARPES) measurements. Furthermore, in order to simulate quasiparticle interference in scanning tunneling microscopy (STM) measurements, we also calculate the joint density of states for both terminals. This work should be helpful for a comprehensive understanding of the topological properties of these two magnetic WSMs and further ARPES and STM measurements.