English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quasistatic computer simulations of shear behavior of water nanoconfined between mica surfaces

MPS-Authors
/persons/resource/persons211638

Grunze,  Michael
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fedyanin, I., Pertsin, A., & Grunze, M. (2011). Quasistatic computer simulations of shear behavior of water nanoconfined between mica surfaces. The Journal of Chemical Physics, 135(17): 174704, pp. 1-8. doi:10.1063/1.3657858.


Cite as: https://hdl.handle.net/21.11116/0000-0001-92EC-0
Abstract
We combine the grand canonical Monte Carlo and molecular dynamics techniques to simulate the shear response of water under a 9.2 Å confinement between two parallel sheets of muscovite mica. The shear deformation is modeled in the quasistatic regime corresponding to an infinitely small shear rate. It is found that the confined water film is capable of sustaining shear stress, as is characteristic of solids, while remaining fluid-like in respect of molecular mobility and lateral order. An important information is obtained by splitting the stress tensor components into contributions arising from the interaction of the opposing mica sheets between themselves and their interaction with water. The mica-mica contributions to shear stress show a strong anisotropy dictated by the alignment of the surface K(+) ions in chains along the x axis. On shearing in this direction, the mica-mica contribution to shear stress is negligible, so that the shear resistance is determined by the water interlayer. By contrast, in the y direction, the mica-mica contribution to shear resistance is dominant. The water-mica contribution is slightly less in magnitude but opposite in sign. As a consequence, the mica-mica contribution is largely canceled out. The physics behind this cancellation is the screening of the electrostatic interactions of the opposing surface K(+) ions by water molecules.