English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Identifying Cognitive Assistance with Mobile Electroencephalography: A Case Study with In-Situ Projections for Manual Assembly

MPS-Authors
/persons/resource/persons83861

Chuang,  LL
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kosch, A., Funk, M., Schmidt, A., & Chuang, L. (2018). Identifying Cognitive Assistance with Mobile Electroencephalography: A Case Study with In-Situ Projections for Manual Assembly. New York, NY, USA: ACM Press.


Cite as: http://hdl.handle.net/21.11116/0000-0001-9320-4
Abstract
Manual assembly at production is a mentally demanding task. With rapid prototyping and smaller production lot sizes, this results in frequent changes of assembly instructions that have to be memorized by workers. Assistive systems compensate this increase in mental workload by providing "just-in-time" assembly instructions through in-situ projections. The implementation of such systems and their benefits to reducing mental workload have previously been justified with self-perceived ratings. However, there is no evidence by objective measures if mental workload is reduced by in-situ assistance. In our work, we showcase electroencephalography (EEG) as a complementary evaluation tool to assess cognitive workload placed by two different assistive systems in an assembly task, namely paper instructions and in-situ projections. We identified the individual EEG bandwidth that varied with changes in working memory load. We show, that changes in the EEG bandwidth are found between paper instructions and in-situ projections, indicating that they reduce working memory compared to paper instructions. Our work contributes by demonstrating how design claims of cognitive demand can be validated. Moreover, it directly evaluates the use of assistive systems for delivering context-aware information. We analyze the characteristics of EEG as real-time assessment for cognitive workload to provide insights regarding the mental demand placed by assistive systems.