English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Microstimulation and NET-fMRI examination of the relation between the anterior insular cortex and the whole-brain activity in the macaque monkey

MPS-Authors
/persons/resource/persons215913

Smuda,  J
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84465

Klein,  C
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84099

Murayama,  Y
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84733

Oeltermann,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84309

Werner,  J
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84237

Steudel,  T
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons85303

Krampe,  E
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83908

Evrard,  HC
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Smuda, J., Klein, C., Murayama, Y., Oeltermann, A., Werner, J., Steudel, T., et al. (2018). Microstimulation and NET-fMRI examination of the relation between the anterior insular cortex and the whole-brain activity in the macaque monkey. Poster presented at 11th FENS Forum of Neuroscience, Berlin, Germany.


Cite as: http://hdl.handle.net/21.11116/0000-0001-95C3-A
Abstract
The anterior insular cortex (AIC) is often regarded as a key “node” of the salience network that mediates the central representation and goal-directed control of homeostatic bodily states by coordinating brain networks. Given the possible role of the AIC in brain network dynamics, we combined electrophysiology and electrical microstimulation in the left and right AIC with functional magnetic resonance imaging (fMRI) to examine blood-oxygen-level-dependent (BOLD) signal changes in cortical and subcortical areas in 4 anesthetized macaque monkeys in a 7T scanner. 10-channel laminar electrodes were introduced in the ‘von Economo neuron area’ of the AIC to record ongoing spontaneous neuronal activity during two-shot echo-planar imaging with a temporal resolution of 2 seconds. Focusing on the local field potential gamma band (56-79 Hz) unilateral events were detected and used to trigger the BOLD signal, a method called ‘neural-event-triggered fMRI’ (NET-fMRI) (Logothetis et al. Nature 2012 491:547-53). The results showed markedly different patterns of whole-brain activation and deactivation for the left and right AIC. Subsequently, the laminar electrodes were replaced with single channel iridium electrodes to alternately deliver electrical microstimulation pulses (200μs biphasic charge-balanced pulses with a 100 Hz frequency) to the left and right AIC. Although the stimulations activated the same brain areas (e.g. amygdala, thalamus) the whole-brain activity following left stimulation tended to be stronger and more prevalent. These results, combined with our tract-tracing data begin to unravel the functional organization underlying the role of the AIC in functional brain networks and brainstem autonomic control regulation.