English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Unravelling biocultural population structure in 4th/3rd century BC Monterenzio Vecchio (Bologna, Italy) through a comparative analysis of strontium isotopes, non-metric dental evidence, and funerary practices

MPS-Authors
/persons/resource/persons101034

Jochum,  Klaus P.
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sorrentino, R., Bortolini, E., Lugli, F., Mancuso, G., Buti, L., Oxilia, G., et al. (2018). Unravelling biocultural population structure in 4th/3rd century BC Monterenzio Vecchio (Bologna, Italy) through a comparative analysis of strontium isotopes, non-metric dental evidence, and funerary practices. PLoS One, 13(3): e0193796. doi:10.1371/journal.pone.0193796.


Cite as: https://hdl.handle.net/21.11116/0000-0001-A91D-1
Abstract
The 4th century BC marks the main entrance of Celtic populations in northern Italy. Their arrival has been suggested based on the presence of Celtic customs in Etruscan mortuary contexts, yet up to now few bioarchaeological data have been examined to support or reject the arrival of these newcomers. Here we use strontium isotopes, non-metric dental traits and funerary patterns to unravel the biocultural structure of the necropolis of Monterenzio Vecchio (Bologna, Italy). Subsamples of our total sample of 38 individuals were analyzed based on different criteria characterizing the following analyses: 1) strontium isotope analysis to investigate migratory patterns and provenance; 2) non-metric dental traits to establish biological relationships between Monterenzio Vecchio, 13 Italian Iron age necropolises and three continental and non-continental Celtic necropolises; 3) grave goods which were statistically explored to detect possible patterns of cultural variability. The strontium isotopes results indicate the presence of local and non-local individuals, with some revealing patterns of mobility. The dental morphology reveals an affinity between Monterenzio Vecchio and Iron Age Italian samples. However, when the Monterenzio Vecchio sample is separated by isotopic results into locals and non-locals, the latter share affinity with the sample of non-continental Celts from Yorkshire (UK). Moreover, systematic analyses demonstrate that ethnic background does not retain measurable impact on the distribution of funerary elements. Our results confirm the migration of Celtic populations in Monterenzio as archaeologically hypothesized on the basis of the grave goods, followed by a high degree of cultural admixture between exogenous and endogenous traits. This contribution shows that combining different methods offers a more comprehensive perspective for the exploration of biocultural processes in past and present populations.