Help Privacy Policy Disclaimer
  Advanced SearchBrowse





Two-Color Pump-Probe Experiments on Small Quantum Systems at the Free-Electron Laser in Hamburg


Schmid,  Georg
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 27MB

Supplementary Material (public)
There is no public supplementary material available

Schmid, G. (2018). Two-Color Pump-Probe Experiments on Small Quantum Systems at the Free-Electron Laser in Hamburg. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.

Cite as: https://hdl.handle.net/21.11116/0000-0001-ADFD-0
Within this thesis, the dynamical response of small quantum systems after the absorption of multiple extreme-ultraviolet (XUV) photons is studied via two-color pump-probe experiments at the free-electron laser (FEL) in Hamburg (FLASH) by employing many-particle recoil-ion momentum spectroscopy. The multi-photon ionization of argon atoms is investigated at a photon energy of 27 eV and FEL intensities of 1013 - 1014W=cm2. The sequential ionization channel is found to dominate and intermediate resonances are revealed by a delayed infrared (IR) laser pulse. Molecular hydrogen (H2) is studied at a photon energy of 28.2 eV. Dissociation via excited states and fragmentation by sequential two-photon ionization are observed. In addition, it is shown how the ground-state dissociation of H+2 can be used as a tool to determine the temporal overlap between an XUV and IR laser pulse. In the argon dimer, multiple interatomic relaxation processes are triggered by the absorption of several 27-eV-photons. Besides interatomic Coulombic decay (ICD), frustrated triple ionization and charge transfer at crossings of potential energy curves are observed. The lifetime of charge transfer is determined to be (531 +/- 136) fs using an XUV-IR pump-probe scheme. The employed reaction microscope is upgraded by an in-line XUV split-delay and focussing optics, which was designed and commissioned as part of this thesis.