Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Plasma High Harmonic Generation and Single Attosecond Pulse Emission from Ultraintense Laser Pulses

MPG-Autoren
/persons/resource/persons206319

Tang,  Suo
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

main_tang.pdf
(Verlagsversion), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tang, S. (2018). Plasma High Harmonic Generation and Single Attosecond Pulse Emission from Ultraintense Laser Pulses. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-AEF6-6
Zusammenfassung
The thesis is devoted to the analytical and numerical studies of high-order harmonic generation and super-intense single attosecond pulse emission via ultra-relativistic laserplasma interaction. In the ultra-relativistic regime, the laser radiation pressure induces plasma ion motion through the so called hole-boring effect, resulting in frequency widening of the harmonic spectra. This widening, analyzed analytically and validated by particle-in-cell simulations, produces a quasi-continuous frequency spectrum, a prerequisite for generating an intense single attosecond pulse. Based on the results and physical considerations, parameter maps highlighting the optimum regions for generating a single intense attosecond pulse and coherent XUV radiation are presented. Moreover, a robust plasma gating is developed to generate a super-intense phase-stabilized single attosecond pulse. The hole-boring effect limits the most efficient high-frequency emission in one laser cycle making it possible to isolate a single attosecond pulse. The generated pulse is characterized by a stabilized spectral phase ψ(ω) ≈± π/2 and an ultra-broad exponential spectrum up to keV region bounded by ROM scaling and CSE scaling. The unprecedented intensity highlights the potential of the isolated attosecond pulse for performing attosecond-pump attosecond-probe experiments.