English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Combinatorial screening of the microstructure–property relationships for Fe–B–X stiff, light, strong and ductile steels

MPS-Authors
/persons/resource/persons136263

Baron,  Christian
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125400

Springer,  Hauke
Combinatorial Metallurgy and Processing, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Baron, C., Springer, H., & Raabe, D. (2016). Combinatorial screening of the microstructure–property relationships for Fe–B–X stiff, light, strong and ductile steels. Materials and Design, 112, 131-139. doi:10.1016/j.matdes.2016.09.065.


Cite as: http://hdl.handle.net/21.11116/0000-0001-B292-0
Abstract
We systematically screened the mechanical, physical and microstructural properties of the alloy systems Fe–10 B–5 X (at.; X = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W), in order to identify novel metal matrix composite steels as next generation lightweight materials. The alloys were synthesised and processed by bulk liquid metallurgical techniques, and subsequently analysed for their mechanical and physical properties (i.e. Young's modulus, density, tensile strength and ductility) as well their microstructure and constitution. From the wide variety of observed boride phases and microstructures and resultant different properties, Cr and Zr additions were found to be most effective. Cr qualifies well as the high fraction of M2B borides of spherical morphology allows achieving a similar stiffness/density ratio and mechanical performance as the reference Ti alloyed materials, but at substantially reduced alloy costs. Zr blended composites on the other hand are softer and less ductile, but the alignment of spiky ZrB2 particles during swaging led to a much higher – though most probably anisotropic – specific modulus. Consequences and recommendations for future alloy and processing design are outlined and discussed. © 2016 Elsevier Ltd