Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Effects of Mn additions on microstructure and properties of Fe–TiB2 based high modulus steels

MPG-Autoren
/persons/resource/persons136263

Baron,  Christian
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125400

Springer,  Hauke
Combinatorial Metallurgy and Processing, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Baron, C., Springer, H., & Raabe, D. (2016). Effects of Mn additions on microstructure and properties of Fe–TiB2 based high modulus steels. Materials and Design, 111, 185-191. doi:10.1016/j.matdes.2016.09.003.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-B28A-A
Zusammenfassung
We studied the effects of Mn additions from 0 to 30 wt. on microstructure, mechanical and physical properties of liquid metallurgy synthesised high modulus steels in hypo- and hyper-eutectic TiB2 concentrations. While Mn has little effect on density, both Young's modulus and mechanical properties were strongly affected by the achieved wide spectrum of matrix microstructures, ranging from ferrite to martensite, reverted austenite, ε-martensite and austenite. Mn additions of 20 and 30 wt. did not translate into enhanced mechanical performance despite the higher inherent ductility of the predominantly austenitic matrix, and instead eliminate the intended weight saving potential by significantly reducing the Young's modulus. Martensitic matrices of Mn concentrations of 10 wt., on the other hand, are favourable for improved matrix/particle co-deformation without sacrificing too much of the composites' stiffness. In hypo-eutectic Fe – TiB2 based steels, mechanical properties on the level of high strength dual phase steels could be achieved (~ 900 MPa UTS and 20 tensile elongation) but with an enhanced Young's modulus of 217 GPa and reduced density of 7460 kg m− 3. These significantly improved physical and mechanical properties render Mn alloyed high modulus steels promising candidate materials for next generation lightweight structural applications. © 2016 Elsevier Ltd