English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effect of Si on the acceleration of bainite transformation by pre-existing martensite

MPS-Authors
/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Toji, Y., Matsuda, H., & Raabe, D. (2016). Effect of Si on the acceleration of bainite transformation by pre-existing martensite. Acta Materialia, 116, 250-262. doi:10.1016/j.actamat.2016.06.044.


Cite as: https://hdl.handle.net/21.11116/0000-0001-B714-A
Abstract
Bainite transformation was investigated focusing on the influence of pre-existing martensite on the transformation kinetics, morphology and crystallographic orientation of subsequently formed bainite using EBSD and atom probe tomography. Two 1.1 wt C-3wt.Mn steels with and without 2 wt Si were used to clarify the effect of Si. Steels were rapidly cooled from 900 °C to 300 °C and held at this temperature, or quenched from 900 °C once in water to generate approximately 30 vol martensite followed by holding at 300 °C. Bainite transformation was clearly accelerated by pre-existing martensite in both Si-containing and Si-free steels. Bainite surrounds the pre-existing martensite in the Si-free steel, whereas it grows to the interior of the austenite grains in the steel containing 2 wt Si. The major orientation relationship between bainite and adjacent austenite was changed by the presence of martensite from Nishiyama-Wassermann (N-W) to Greninger-Troiano (G-T) regardless of Si content. Clear carbon partitioning from martensite into austenite was observed prior to the bainite transformation in the 2 wt Si steel, which was not observed in the Si-free steel. We suggest that the dislocations introduced by the martensite transformation act as a primary factor accelerating the bainite transformation when martensite is introduced prior to the bainite transformation. © 2016 Acta Materialia Inc.