English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural and optical properties of (1122) InGaN quantum wells compared to (0001) and (1120)

MPS-Authors
/persons/resource/persons125439

Tytko,  Darius
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125088

Choi,  Pyuck-Pa
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Pristovsek, M., Han, Y., Zhu, T., Oehler, F., Tang, F., Oliver, R. A., et al. (2016). Structural and optical properties of (1122) InGaN quantum wells compared to (0001) and (1120). Semiconductor Science and Technology, 31(8): 085007. doi:10.1088/0268-1242/31/8/085007.


Cite as: https://hdl.handle.net/21.11116/0000-0001-B599-6
Abstract
We benchmarked growth, microstructure and photo luminescence (PL) of (112-2) InGaN quantum wells (QWs) against (0001) and (112-0). In incorporation, growth rate and the critical thickness of (112-2) QWs are slightly lower than (0001) QWs, while the In incorporation on (112-0) is reduced by a factor of three. A small step-bunching causes slight fluctuations of the emission wavelength. Transmission electron microscopy as well as atom probe tomography (APT) found very flat interfaces with little In segregation even for 20 In content. APT frequency distribution analysis revealed some deviation from a random InGaN alloy, but not as severe as for (112-0). The slight deviation of (112-2) QWs from an ideal random alloy did not broaden the 300 K PL, the line widths were similar for (112-2) and (0001) while (112-0) QWs were broader. Despite the high structural quality and narrow PL, the integrated PL signal at 300 K was about 4 lower on (112-2) and more than 10 lower on (112-0). © 2016 IOP Publishing Ltd.