Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Molecular Spin Crossover in Slow Motion: Light-Induced Spin-State Transitions in Trigonal Prismatic Iron(II) Complexes

MPG-Autoren
/persons/resource/persons136412

Stock,  Philipp
Institut für Chemie, Technische Universität Berlin, Berlin, Germany;
Interaction Forces and Functional Materials, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Stock, P., Deck, E. P., Hohnstein, S., Korzekwa, J., Meyer, K., Heinemann, F. W., et al. (2016). Molecular Spin Crossover in Slow Motion: Light-Induced Spin-State Transitions in Trigonal Prismatic Iron(II) Complexes. Inorganic Chemistry, 55(11), 5254-5265. doi:10.1021/acs.inorgchem.6b00238.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-B530-C
Zusammenfassung
A straightforward access is provided to iron(II) complexes showing exceedingly slow spin-state interconversion by utilizing trigonal-prismatic directing ligands (Ln) of the extended-tripod type. A detailed analysis of the interrelations between complex structure (X-ray diffraction, density functional theory) and electronic character (SQUID magnetometry, Mössbauer spectroscopy, UV/vis spectroscopy) of the iron(II) center in mononuclear complexes [FeLn] reveals spin crossover to occur along a coupled breathing/torsion reaction coordinate, shuttling the complex between the octahedral low-spin state and the trigonal-prismatic high-spin state along Bailar's trigonal twist pathway. We associate both the long spin-state lifetimes in the millisecond domain close to room temperature and the substantial barriers against thermal scrambling (Ea ≈ 33 kJ mol-1, from Arrhenius analysis) with stereochemical constraints. In particular, the topology of the κ6N ligands controls the temporary and structural dynamics during spin crossover. © 2016 American Chemical Society.