User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Phase stability of the nanolaminates V2Ga2C and (Mo1-xVx)2Ga2C from first-principles calculations


Alling,  Björn
Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linköping University, Linköping, Sweden;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Thore, A., Dahlqvist, M., Alling, B., & Rosén, J. A. (2016). Phase stability of the nanolaminates V2Ga2C and (Mo1-xVx)2Ga2C from first-principles calculations. Physical Chemistry Chemical Physics, 18(18), 12682-12688. doi:10.1039/c6cp00802j.

Cite as: http://hdl.handle.net/21.11116/0000-0001-BA2B-E
We here use first-principles calculations to investigate the phase stability of the hypothetical laminated material V2Ga2C and the related alloy (Mo1-xVx)2Ga2C, the latter for a potential parent material for synthesis of (Mo1-xVx)2C, a new two-dimensional material in the family of so called MXenes. We predict that V2Ga2C is thermodynamically stable with respect to all identified competing phases in the ternary V-Ga-C phase diagram. We further calculate the stability of ordered and disordered configurations of Mo and V in (Mo1-xVx)2Ga2C and predict that ordered (Mo1-xVx)2Ga2C for x ≤ 0.25 is stable, with an order-disorder transition temperature of ∼1000 K. Furthermore, (Mo1-xVx)2Ga2C for x = 0.5 and x ≥ 0.75 is suggested to be stable, but only for disordered Mo-V configurations, and only at elevated temperatures. We have also investigated the electronic and elastic properties of V2Ga2C; the calculated bulk, shear, and Young's modulus are 141, 94, and 230 GPa, respectively. © 2016 the Owner Societies.