Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Complex Nanotwin Substructure of an Asymmetric Σ9 Tilt Grain Boundary in a Silicon Polycrystal

MPG-Autoren
/persons/resource/persons134807

Stoffers,  Andreas
Interface Design in Solar Cells, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125090

Cojocaru-Mirédin,  Oana
Interface Design in Solar Cells, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Stoffers, A., Ziebarth, B., Barthel, J., Cojocaru-Mirédin, O., Elsässer, C., & Raabe, D. (2015). Complex Nanotwin Substructure of an Asymmetric Σ9 Tilt Grain Boundary in a Silicon Polycrystal. Physical Review Letters, 115(23): 235502. doi:10.1103/PhysRevLett.115.235502.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-BAD8-A
Zusammenfassung
Grain boundaries in materials have substantial influences on device properties, for instance on mechanical stability or electronic minority carrier lifetime in multicrystalline silicon solar cells. This applies especially to asymmetric, less ordered or faceted interface portions. Here, we present the complex atomic interface structure of an asymmetric Σ9 tilt grain boundary in silicon, observed by high resolution scanning transmission electron microscopy (HR-STEM) and explained by atomistic modeling and computer simulation. Structural optimization of interface models for the asymmetric Σ9 and related symmetrical Σ9 and Σ3 tilt grain boundaries, by means of molecular-statics simulations with empirical silicon potentials in combination with first-principles calculations, results in a faceted asymmetric interface structure, whose grain-boundary energy is so low that it is likely to exist. The simulated local atomic structures match the observed HR-STEM images very well. © 2015 American Physical Society.