English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Atomic scale morphology, growth behaviour and electronic properties of semipolar {101̄3} GaN surfaces

MPS-Authors
/persons/resource/persons125262

Lymperakis,  Liverios
Microstructure, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Kioseoglou, J., Kalesaki, E., Lymperakis, L., Karakostas, T. H., & Komninou, P. (2013). Atomic scale morphology, growth behaviour and electronic properties of semipolar {101̄3} GaN surfaces. Journal of Physics: Condensed Matter, 25(4): 045008. doi:10.1088/0953-8984/25/4/045008.


Cite as: http://hdl.handle.net/21.11116/0000-0001-E3A4-5
Abstract
First-principles calculations relating to the atomic structure and electronic properties of 101̄3 GaN surfaces reveal significant differentiations between the two polarity orientations. The (101̄3) surface exhibits a remarkable morphological stability, stabilizing a metallic structure (Ga adlayer) over the entire range of the Ga chemical potential. In contrast, the semiconducting, cleaved surface is favoured on (1013) under extremely and moderately N-rich conditions, a Ga bilayer is stabilized under corresponding Ga-rich conditions and various transitions between metallic reconstructions take place in intermediate growth stoichiometries. Efficient growth schemes for smooth, two-dimensional GaN layers and the isolation of f10N13g material from parasitic orientations are identified. © 2013 IOP Publishing Ltd.