English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Charge radii and electromagnetic moments of 195–211At

MPS-Authors

Ascher,  P.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

Atanasov,  D.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30312

Blaum,  K.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30324

Borgmann,  C.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30508

George,  S.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons187875

Kisler,  D.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30722

Kreim,  S.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;
CERN, CH-1211 Geneva 23, Switzerland ;

/persons/resource/persons103130

Wolf,  Robert
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;
Ernst-Moritz-Arndt-Universität, Institut für Physik, 17487 Greifswald, Germany;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Cubiss, J. G., Barzakh, A. E., Seliverstov, M. D., Andreyev, A. N., Andel, B., Antalic, S., et al. (2018). Charge radii and electromagnetic moments of 195–211At. Physical Review C, 97(5): 054327. doi:10.1103/PhysRevC.97.054327.


Cite as: https://hdl.handle.net/21.11116/0000-0001-B6D3-3
Abstract
Hyperfine-structure parameters and isotope shifts of 195–211At have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantly α-decaying nuclei. The electromagnetic moments and changes in the mean-square charge radii of the astatine nuclei have been extracted from the measured hyperfine-structure constants and isotope shifts. This was only made possible by dedicated state-of-the-art large-scale atomic computations of the electronic factors and the specific mass shift of atomic transitions in astatine that are needed for these extractions. By comparison with systematics, it was possible to assess the reliability of the results of these calculations and their ascribed uncertainties. A strong deviation in the ground-state mean-square charge radii of the lightest astatine isotopes, from the trend of the (spherical) lead isotopes, is interpreted as the result of an onset of deformation. This behavior bears a resemblance to the deviation observed in the isotonic polonium isotopes. Cases for shape coexistence have been identified in 197,199At, for which a significant difference in the charge radii for ground (9/2) and isomeric (1/2+) states has been observed.