Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity

MPG-Autoren
/persons/resource/persons182604

Sentef,  M. A.
Center for Free Electron Laser Science;
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons30964

Ruggenthaler,  M.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;

Externe Ressourcen
Volltexte (frei zugänglich)

1802.09437.pdf
(Preprint), 534KB

eaau6969.full.pdf
(Verlagsversion), 375KB

Ergänzendes Material (frei zugänglich)

aau6969_SM.pdf
(Ergänzendes Material), 327KB

Zitation

Sentef, M. A., Ruggenthaler, M., & Rubio, A. (2018). Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity. Science Advances, 4(11): eaau6969. doi:10.1126/sciadv.aau6969.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-B282-2
Zusammenfassung
So far, laser control of solids has been mainly discussed in the context of strong classical nonlinear light-matter coupling in a pump-probe framework. Here, we propose a quantum-electrodynamical setting to address the coupling of a low-dimensional quantum material to quantized electromagnetic fields in quantum cavities. Using a protoypical model system describing FeSe/SrTiO3 with electron-phonon long-range forward scattering, we study how the formation of phonon polaritons at the two-dimensional interface of the material modifies effective couplings and superconducting properties in a Migdal-Eliashberg simulation. We find that through highly polarizable dipolar phonons, large cavity-enhanced electron-phonon couplings are possible, but superconductivity is not enhanced for the forward-scattering pairing mechanism due to the interplay between coupling enhancement and mode softening. Our results demonstrate that quantum cavities enable the engineering of fundamental couplings in solids, paving the way for unprecedented control of material properties.