Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Cavity quantum-electrodynamical polaritonically enhanced superconductivity

MPG-Autoren
/persons/resource/persons182604

Sentef,  M. A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;

/persons/resource/persons30964

Ruggenthaler,  M.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;
Nano-Bio Spectroscopy Group, Universidad del País Vasco;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;

Externe Ressourcen
Volltexte (frei zugänglich)

1802.09437.pdf
(Preprint), 534KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sentef, M. A., Ruggenthaler, M., & Rubio, A. (2018). Cavity quantum-electrodynamical polaritonically enhanced superconductivity.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-B282-2
Zusammenfassung
Laser control of solids was so far mainly discussed in the context of strong classical nonlinear light-matter coupling in a pump-probe framework. Here we propose a quantum-electrodynamical setting to address the coupling of a low-dimensional quantum material to quantized electromagnetic fields in quantum cavities. Using a protoypical model system describing FeSe/SrTiO3 with electron-phonon long-range forward scattering, we study how the formation of phonon polaritons at the 2D interface of the material modifies effective couplings and superconducting properties in a Migdal-Eliashberg simulation. We find that through highly polarizable dipolar phonons, large cavity-enhanced electron-phonon couplings are possible but superconductivity is not enhanced for the forward-scattering pairing mechanism due to the interplay between coupling enhancement and mode softening. An analysis of critical temperature dependencies on couplings and mode frequencies suggests that that cavity-enhanced superconductivity is possible for more conventional short-range pairing mechanisms. Our results demonstrate that quantum cavities enable the engineering of fundamental couplings in solids paving the way to unprecedented control of material properties.