Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Physical mechanisms governing drag reduction in turbulent Taylor-Couette flow with finite-size deformable bubbles

MPG-Autoren
/persons/resource/persons192998

Lohse,  Detlef
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Spandan, V., Verzicco, R., & Lohse, D. (2018). Physical mechanisms governing drag reduction in turbulent Taylor-Couette flow with finite-size deformable bubbles. Journal of Fluid Mechanics, 849: R3. doi:10.1017/jfm.2018.478.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-B9C2-3
Zusammenfassung
The phenomenon of drag reduction induced by injection of bubbles into a turbulent carrier fluid has been known for a long time; the governing control parameters and underlying physics is, however, not well understood. In this paper, we use three-dimensional numerical simulations to uncover the effect of deformability of bubbles injected in a turbulent Taylor-Couette flow on the overall drag experienced by the system. We consider two different Reynolds numbers for the carrier flow, i.e. Re-i = 5 x 10(3) and Re-i = 2 x 10(4) ; the deformability of the bubbles is controlled through the Weber number, which is varied in the range We=0.01-2.0. Our numerical simulations show that increasing the deformability of bubbles (that is, We) leads to an increase in drag reduction. We look at the different physical effects contributing to drag reduction and analyse their individual contributions with increasing bubble deformability. Profiles of local angular velocity flux show that, in the presence of bubbles, turbulence is enhanced near the inner cylinder while attenuated in the bulk and near the outer cylinder. We connect the increase in drag reduction to the decrease in dissipation in the wake of highly deformed bubbles near the inner cylinder.