English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The 2018 biomembrane curvature and remodeling roadmap

MPS-Authors
/persons/resource/persons121236

Dimova,  Rumiana       
Rumiana Dimova, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121584

Lipowsky,  Reinhard       
Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons122009

Weikl,  Thomas R.
Thomas Weikl, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 8MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bassereau, P., Jin, R., Baumgart, T., Deserno, M., Dimova, R., Frolov, V. A., et al. (2018). The 2018 biomembrane curvature and remodeling roadmap. Journal of Physics D: Applied Physics, 51(34): 343001. doi:10.1088/1361-6463/aacb98.


Cite as: https://hdl.handle.net/21.11116/0000-0001-E664-B
Abstract
The importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo- and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality. The contribution of biophysicists and biologists is essential for shedding light on the mechanistic understanding and quantification of these processes. Given the vast complexity of phenomena and mechanisms involved in the coupling between membrane shape and function, it is not always clear in what direction to advance to eventually arrive at an exhaustive understanding of this important research area. The 2018 Biomembrane Curvature and Remodeling Roadmap of Journal of Physics D: Applied Physics addresses this need for clarity and is intended to provide guidance both for students who have just entered the field as well as established scientists who would like to improve their orientation within this fascinating area.