Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Direct knock-on of desolvated ions governs strict ion selectivity in K+ channels.

MPG-Autoren
/persons/resource/persons202592

Kopec,  W.
Research Group of Computational Biomolecular Dynamics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons59321

Köpfer,  D.
Research Group of Computational Biomolecular Dynamics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons14970

de Groot,  B. L.
Research Group of Computational Biomolecular Dynamics, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

2627996.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)

2627996_Suppl.pdf
(Ergänzendes Material), 38MB

Zitation

Kopec, W., Köpfer, D., Vickery, O. N., Bondarenko, A. S., Jansen, T. L. C., de Groot, B. L., et al. (2018). Direct knock-on of desolvated ions governs strict ion selectivity in K+ channels. Nature Chemistry, 10(8), 813-820. doi:10.1038/s41557-018-0105-9.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-DB3B-7
Zusammenfassung
The seeming contradiction that K+ channels conduct K+ ions at maximal throughput rates while not permeating slightly smaller Na+ ions has perplexed scientists for decades. Although numerous models have addressed selective permeation in K+ channels, the combination of conduction efficiency and ion selectivity has not yet been linked through a unified functional model. Here, we investigate the mechanism of ion selectivity through atomistic simulations totalling more than 400 μs in length, which include over 7,000 permeation events. Together with free-energy calculations, our simulations show that both rapid permeation of K+ and ion selectivity are ultimately based on a single principle: the direct knock-on of completely desolvated ions in the channels' selectivity filter. Herein, the strong interactions between multiple 'naked' ions in the four filter binding sites give rise to a natural exclusion of any competing ions. Our results are in excellent agreement with experimental selectivity data, measured ion interaction energies and recent two-dimensional infrared spectra of filter ion configurations.