Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Analysis of the primary photocycle reactions occurring in the light, oxygen, and voltage blue-light receptor by multiconfigurational quantum-chemical methods

MPG-Autoren
/persons/resource/persons92695

Domratcheva,  Tatiana
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92867

Fedorov,  Roman
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95189

Schlichting,  Ilme
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

JChemTheoryComput_2_2006_1565_Suppl1.pdf
(Ergänzendes Material), 2MB

JChemTheoryComput_2_2006_1565_Suppl2.pdf
(Ergänzendes Material), 494KB

Zitation

Domratcheva, T., Fedorov, R., & Schlichting, I. (2006). Analysis of the primary photocycle reactions occurring in the light, oxygen, and voltage blue-light receptor by multiconfigurational quantum-chemical methods. Journal of Chemical Theory and Computation, 2(6), 1565-1574. doi:10.1021/ct0600114.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-DDFE-9
Zusammenfassung
The photocycle reactions occurring between the flavin mononucleotide cofactor and the reactive cysteine residue in the blue-light photoreceptor domain light, oxygen, and voltage (LOV) were modeled for a system consisting of lumiflavin and thiomethanol. The electronic structure and energies of the reactive species were estimated using the CASSCF and MCQDPT2 quantum-chemical methods. The reaction pathway for the S-C4a covalent adduct formation in the triplet state was determined. Concerted electron and proton transfer from the thiol to the flavin in the triplet electronic state results in a biradical complex that is, however, unstable because its structure corresponds to a triplet-singlet crossing. The covalent adduct dissociation in the ground electronic state is a reverse of the photoreaction proceeding via a single energy barrier for hydrogen transfer. Thus, both photo- and dark reactions were found to be single-step chemical transformations occurring without stable intermediates. The photoreaction yielding the S-C4a covalent adduct is an intrinsic property of the isoalloxazine-thiol complex in the specific geometry arranged by the protein in LOV. The S-C4a covalent adduct between lumiflavin and thiomethanol is rather stable implying that in LOV its dissociation is facilitated by the protein.