Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Mean-field study of the heavy-fermion metamagnetic transition

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Viola-Kusminskiy, S., Beach, K. S. D., Castro Neto, A. H., & Campbell, D. K. (2008). Mean-field study of the heavy-fermion metamagnetic transition. PHYSICAL REVIEW B, 77(9): 094419. doi:10.1103/PhysRevB.77.094419.

Cite as: https://hdl.handle.net/21.11116/0000-0001-DF34-A
We investigate the evolution of the heavy-fermion ground state under application of a strong external magnetic field. We present a richer version of the usual hybridization mean-field theory that allows for hybridization in both the singlet and triplet channels and incorporates a self-consistent Weiss field. We show that for a magnetic field strength B*, a filling-dependent fraction of the zero-field hybridization gap, the spin up quasiparticle band becomes fully polarized - an event marked by a sudden jump in the magnetic susceptibility. The system exhibits a kind of quantum rigidity in which the susceptibility (and several other physical observables) is insensitive to further increases in field strength. This behavior ends abruptly with the collapse of the hybridization order parameter in a first-order transition to the normal metallic state. We argue that the feature at B* corresponds to the "metamagnetic transition" in YbRh2Si2. Our results are in good agreement with recent experimental measurements.