English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Unravelling the age of fine roots of temperate and boreal forests

MPS-Authors
/persons/resource/persons62544

Schöning,  Ingo
Soil and Ecosystem Processes, Dr. M. Schrumpf, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62545

Schrumpf,  Marion
Soil and Ecosystem Processes, Dr. M. Schrumpf, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62589

Trumbore,  Susan E.
Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

Locator
Fulltext (public)

BGC2893.pdf
(Publisher version), 2MB

Supplementary Material (public)

BGC2893s1.zip
(Supplementary material), 520KB

Citation

Solly, E. F., Brunner, I., Helmisaari, H.-S., Herzog, C., Leppälammi-Kujansuu, J., Schöning, I., et al. (2018). Unravelling the age of fine roots of temperate and boreal forests. Nature Communications, 9(1): 3006. doi:10.1038/s41467-018-05460-6.


Cite as: http://hdl.handle.net/21.11116/0000-0001-DFB0-D
Abstract
Fine roots support the water and nutrient demands of plants and supply carbon to soils. Quantifying turnover times of fine roots is crucial for modeling soil organic matter dynamics and constraining carbon cycle–climate feedbacks. Here we challenge widely used isotope-based estimates suggesting the turnover of fine roots of trees to be as slow as a decade. By recording annual growth rings of roots from woody plant species, we show that mean chronological ages of fine roots vary from <1 to 12 years in temperate, boreal and sub-arctic forests. Radiocarbon dating reveals the same roots to be constructed from 10 ± 1 year (mean ± 1 SE) older carbon. This dramatic difference provides evidence for a time lag between plant carbon assimilation and production of fine roots, most likely due to internal carbon storage. The high root turnover documented here implies greater carbon inputs into soils than previously thought which has wide-ranging implications for quantifying ecosystem carbon allocation.